Graph Theory as A Tool for Growing Mathematical Creativity

Puput Suriyah, Stevanus Budi Waluya, Rochmad Rochmad, Wardono Wardono

Abstract


Abstrac: The purpose of this research to describe about graph theory is subject can serve as a tool for growing mathematical creativity. Systematic Literature Review (SLR) is used as a method of analyzing a wide range of articles and literature were obtained through searching of data sources. The results of the analysis of various sources elaborated reviews about the open ended questions of graph theory that are used as a disclosure in growing the mathematical creativity of students based on Bahar & Maker's theory modifications are open ended questions that have characteristics such as fluency and flexibility and have been done in detail/elaboration. Fluency on theory graph can be known when students do task/exercises such as isomorphic graph. Flexibility on theory graph can be known when students do task/exercises, example about spanning trees. In this paper also we showed how can use graph theory to teach standards of NCTM (National Council of Teachers on Mathematics of America) that related with mathematical creativity.

 

Keyword: graph theory, mathematical creativity, fluency, flexibility

  

Abstrak: Tujuan penelitian ini untuk mendeskripsikan graf teori merupakan salah satu alat untuk menumbuhkan kreativitas matematika. Systematic Literature Review (SLR) digunakan sebagai metode dalam menganalisis sebagai berbagai artikel dan literatur yang diperoleh melalui pencarian sumber data. Hasil analisis dari berbagai sumber tersebut dijabarkan ke dalam ulasan tentang pertanyaaan terbuka dari teori graf yang digunakan untuk mengungkap tumbuhnya kreativitas matematika peserta didik berdasarkan teori modifikasi Bahar & Maker dimana pertanyaan terbuka yang memiliki karakteristk seperti fluency/kelancaran dan flexibility/keluwesan yang dikerjakan secara elaborasi. Dimensi fluency/kelancaran pada teori graf dapat diketahui ketika peserta didik mengerjakan soal misal tentang isomorfik. Dimensi flexibility/keluwesan pada teori graf dapat diketahui ketika peserta didik mengerjakan soal misal tentang spanning trees/pohon berentang. Dalam artikel ini ditunjukkan juga bagaimana graf teori menggunakan standar dari NCTM yang terkait dengan kreaitvitas matematika.

 

Kata kunci: teori graf, kreativitas matematika, fluency, flexibility

Keywords


graph theory, mathematical creativity, fluency, flexibility

Full Text:

PDF

References


Bahar, A. Kadir. & Maker, C. June. 2011. Exploring the Relationship between Mathematical Creativity and Mathematical Achievement. Asia-Pacific Journal of Gifted and Talented Education, 3(1), 33 – 48.

Career Center Maine Departmeny of Labor. 2004. Today’s Work Competence in Maine. Retrieved from http://www.maine.gov/labor/lmis/pdf/Essential WorkCompetencies.pdf.

Chalkiadaki, A. (2018). A Systematic Literature Review of 21st Century Skills and Competencies in Primary Education. International Journal of Instruction, 11(3), 1-16. Cilliers, E. J. (2017).

Dogan, N. 2011. Creative thinking and creativity. In New Trends in Education (Ed.Ozcan Demirel). Ankara: Pegem Akademi Publication.

Grieshober, W. E. 2004. Continuing a Dictionary of Creativity Terms & Definition. New York: International Center for Studies in Creativity State University of New York College at Buffalo. Retrieved from http://www.buffalostate.edu/orgs/cbir/ReadingRoom/theses/Grieswep.pdf.

Mann, Eric L. 2005. Mathematical Creativity and School Mathematics : Indicators of Mathematical Creativity in the Middle School Students. Diakses dari https://opencommons.uconn.edu/dissertations/AAI3205573/

Martin. 2009. Convergent and Divergent Thinking. Retrieved from http://www.eruptingmind.com/convergent-divergent-creative-thinking/[20 Maret 2009]

McGregor, D. 2007. Developing Thinking Developing Learning. Poland: Open University Press.

Nadjafikhah, M., & Yaftian, N. 2013 The Frontage of Creativity and Mathematical Creativity. Procedia - Social and Behavioral Sciences, 90(InCULT 2012), 344–350. https://doi.org/10.1016/j.sbspro.2013.07.101

Silver, E. 1997. Fostering Creativity through Instruction Rich in Mathematical Problem Solving and Problem Possing. Diakses dari https://www.emis.de/journals/ZDM/zdm973a3.pdf




DOI: http://dx.doi.org/10.30734/jpe.v7i1.744

Refbacks

  • There are currently no refbacks.


Copyright (c) 2020 Jurnal Pendidikan Edutama

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats