DEVELOPMENT OF LARSON’S PROBLEMS SOLVING PATTERNS WITH "IDEAL" STRATEGIES

Junarti Junarti, Stevanus Budi Waluyo, Rochmad Rochmad

Abstract


Abstract: Mathematical Problem-solving is taught to improve students' high-order thinking skills. A heuristic problem-solving strategy is used to find different Problem-solving. This research is to: 1) describe the student's Problem-solving ability profile in finding the pattern of algebra solving through the "IDEAL" (Identify Define Explore Act Look back) strategy by developing Larson’s Problem-solving pattern, 2) measuring the extent of the pattern can be formed by using " IDEAL". Finding patterns is part of the first heuristic strategy. The research method used a qualitative approach with descriptive analysis. Problems conveyed to students are done in pairs of two people, with the consideration that more discussion opportunities with friends make it possible to get more than five troubleshooting as Larson puts it. The results showed that: 1) profile Problem-solving ability found pattern with "IDEAL" strategy from student got result that from problem given to 20 student group can help solve algebra Problem-solving; 2) there are four kinds of Problem-solving patterns consisting of 3 Larson model Problem-solving patterns and one Problem-solving pattern using geometry sequence pattern.

Keyword: Problem-solving Pattern, Heuristic, “IDEAL” Strategy

Abstrak: Pemecahan masalah matematika diajarkan untuk meningkatkan kemampuan pemikiran tingkat tinggi mahasiswa.  Strategi pemecahan masalah heuristic digunakan untuk menemukan pemecahan masalah yang berbeda. Penelitian ini untuk: 1) menggambarkan profil kemampuan pemecahan masalah mahasiswa dalam menemukan pola pemecahan aljabar melalui strategi “IDEAL” (Identify Define Explore Act Look back) dengan mengembangkan pola pemecahan masalah Larson, 2) mengukur sejauhmana pola yang dapat dibentuk mahasiswa dengan menggunakan strategi “IDEAL”. Menemukan Pola merupakan bagian dari strategi heuristik yang pertama. Metode penelitiannya menggunakan pendekatan kualitatif dengan  analisis deskriptif. Masalah yang disampaikan kepada mahasiswa dikerjakan secara berpasangan dua orang, dengan pertimbangan bahwa semakin banyak peluang diskusi dengan teman memungkinkan untuk mendapatkan pemecahan masalah lebih dari lima seperti yang disampailan Larson. Hasil penelitian menunjukkan bahwa:  1) profil kemampuan pemecahan masalah menemukan pola dengan strategi “IDEAL” dari  mahasiswa diperoleh hasil bahwa dari masalah yang diberikan kepada 20 kelompok mahasiswa dapat membantu menyelesaikan pemecahan masalah aljabar; 2) terdapat empat macam pola pemecahan masalah yang terdiri dari 3 pola pemecahan masalah model Larson dan satu pola pemecahan masalah dengan menggunakan pola barisan geometri.

Kata Kunci: Pola pemecahan masalah, Heuristik, Strategi “IDEAL”


Keywords


Problem Solving Pattern, Heuristic, “IDEAL” Strategy

Full Text:

PDF

References


Anderson, J. R. (2012). Tracking Problem-solving by Multivariate Pattern Analysis and Hidden Markov Model Algorithms. Neuropsychologia, v50 n4, P487-498 Maret.

Balk, G. (1971). Application of Heuristic Methods to the Study of Mathematics at School. Educational Studies in Mathematics 3, D.Reidel Publishing Company (pp. 133-146). Dordrecht-Holland: D.Reidel Publishing Company.

Bookhart, S. M. (2010). Assess Higher-Order Thinking Skill in Your Classroom. Virginia USA: Alexandria.

Bransford John D., S. B. (1993). The Ideal Problem Solver. New York: W.H. Freeman and Company.

Chronicle, E. P., MacGregor, J. N., & Ormerod, T. C. (Januari 2004). What Makes an Insight Problem? The Roles of Heuristics, Goal Conception, and Solution Recoding in Knowledge-Lean Problems. Journal of Experimental Psychology: Learning, Memory, and Cognition, v30 n1, p14-27.

Counting, G. P. (Nov 2012). Growing Patterns: Seeing beyond Counting. Teaching Children Mathematics, v19 n4, p254-262.

Decker, S. L., & Roberts, A. M. ( May 2015). Specific Cognitive Predictors of Early Math Problem-solving. Psychology in the Schools, V52 n5, p477-488.

Kribbs, E., & Rogowsky, B. (Winter 2016 ). A Review of the Effects of Visual-Spatial Representations and Heuristics on Word Problem-solving in Middle School Mathematics. International Journal of Research in Education and Science, Volume 2, Issue 1, ISSN: 2148-9955, 65-74.

Kusumadewi. (2005). Penenyelesaian Masalah Optimasi dengan Teknik-teknik Heuristik. Yogyakarta: Graha Ilmu.

Larson, L. C. (1983). Problem-Solving Through Problems. New York: Springer-Verlag.

Markworth, K. A. (2012). Growing Patterns: Seeing beyond Counting. Teaching Children Mathematics, v19 n4, p254-262.

Meagher Michael, E. M.-K. (2013). The Shift From "Learner/Doer of Mathematics" to "Teacher of Mathematics": A Heuristic for Teacher Candidates. Mathematics Teacher Education and Development Vol.5 No.1, 88-107.

Middleton, J. A. (2015). Large-Scale Studies Mathematics Educations. In Curriculum, A Lesson for the Common Core Standards Era: The Importance of Considering School-Level Buy-in When Implementing and Evaluating Standards-Based Instructional Materials. USA: Springer.

Mutakhiroh. (2007). Pemanfaatan Metode Heuristik Dalam Pencarian Rute Terpendek dengan Algoritma Semut dan Algoritma Genetika. SNATI , B33-B39.

Nurfuadah, R. N. (2015, Januari Jumat). Kepribadian Turut Tentukan Prestasi Akademik. Retrieved Agustus Kamis, 2015, from rifanadiaNurfuadah.yahoo.com.

Orton, A. (2006). Learning Mathematics. London-New York: Continuum.

Reigeluth, C. M., Lee, J.-Y., Peterson, B., & Chavez, M. (2003). Formative Research on the Heuristic Task Analysis Process. ERIC Clearinghouse on Information & Technology @Syracuse University621 Skytop Road, Ste 160Syracuse, NY 13244-5290, 1-48.

Savitri, P. (2015). Review Desain Interface Aplikasi SOPPPOS Menggunakan Evaluasi Heuristik. Jurnal SIMETRI , 95-100.

Wilkie, K. J., & Clarke, D. M. (Jun 2016). Developing Students' Functional Thinking in Algebra through Different Visualisations of a Growing Pattern's Structure6. Mathematics Education Research Journal, v28 n2, p223-243.

Wismath, S. L., & Orr, D. (November 2015). Collaborative Learning in Problem-solving: A Case Study in Metacognitive Learning. The Canadian Journal for the Scholarship of Teaching and Learning Volume 6 | Issue 3, 1-17.

Yetter, G., Gutkin, T. B., Saunders, A., Galloway, A. M., Sobansky, R. R., & Song, S. Y. (2006). Unstructured Collaboration versus Individual Practice for Complex Problem-solving: A Cautionary Tale. Journal of Experimental Education, v74 n2, p137-159.




DOI: http://dx.doi.org/10.30734/jpe.v5i1.138

Refbacks

  • There are currently no refbacks.


Copyright (c) 2018 Jurnal Pendidikan Edutama

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

View My Stats